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S U M M A R Y
The growing use of the controlled-source electromagnetic method (CSEM) and magnetotel-
lurics (MT) for exploration applications has been driving the development of data acquisition
technologies, and three-dimensional (3-D) modelling and imaging techniques. However, tar-
geting increasingly complex geological environments also further enhances the problems
inherent in large-scale inversion, such as non-uniqueness and resolution issues. In this paper,
we report on two techniques to mitigate these problems. We use 3-D joint CSEM and MT
inversion to improve the model resolution. To avoid the suppression of the resolution capac-
ities of one data type, and thus to balance the use of inherent, and ideally complementary
information content, different data reweighting schemes are proposed. Further, a hybrid model
parametrization approach is presented, where traditional cell-based model parameters are used
simultaneously within a parametric inversion. The idea is to limit the non-uniqueness prob-
lem, typical for 3-D imaging problems, in order to allow for a more focusing inversion. The
methods are demonstrated using synthetic data generated from models with a strong practical
relevance.

Key words: Numerical solutions; Inverse theory; Electrical properties; Magnetotelluric;
Marine electromagnetics.

1 I N T RO D U C T I O N

Large-scale inverse problems are usually underdetermined, mean-
ing that there are more unknowns, typically in the form of highly
digitized model meshes, than data. This adds to the problem that
errors are associated with every geophysical datum. The resulting
issue is referred to as the problem of non-uniqueness of inverse
solutions. To mitigate this problem and to improve the resolution
in an inversion, it is common to take advantage of complemen-
tary natures of different geophysical data sets. In electromagnetic
problems, magnetotelluric (MT) data usually provides the conduc-
tivity information on a more gross scale, while controlled-source
electromagnetic methods (CSEM) have a better ability of illuminat-
ing rather subtle targets, particularly thin resistors. MT data have
been successfully combined with time-domain CSEM data to invert
for one-dimensionally layered models (Hui-Ping et al. 1996; Meju
1996; Rovetta et al. 2008). With CSEM data responding stronger
to thin resistive targets, the combination with MT data has a strong
relevance for providing a less ambiguous interpretation of data mea-
sured over hydrocarbon prospects. Mackie et al. (2007) report a
proof of concept showing the improved resolution by combining
marine CSEM and MT synthetic data for mapping thin resistors.

Even with improved resolution capabilities, the solutions of 3-D
large-scale cell-based (or pixel-based) inversions with finely sam-
pled models usually remain non-unique. Several strategies have
been reported to limit the ambiguities for reconstructed targets and

its conductivities. For cell-based problems, model-smoothing con-
straints are commonly applied, limiting the solutions to a class of
geologically more meaningful ones, that is, avoiding conductivity
variations that are unphysical. A different approach is to actually ad-
dress the underdeterminacy by casting the problem into a parametric
problem. Common parametric solutions to electromagnetic (EM) in-
verse problems (including CSEM and MT) allow the determination
of boundaries between regions of contrasting conductivities, while
avoiding superfluous detail (Smith et al. 1999; de Groot-Hedlin &
Constable 2004; Commer et al. 2006; Zhang et al. 2007). A model
parametrization can, for example, be based on interfaces known
from seismic reflection data. The obvious drawback of such meth-
ods is the necessity of sufficient background information in order to
define a suitable model parametrization. Here, we propose a hybrid
approach, overlaying a cell-based inversion over a particular area
of interest with a parametric inversion over a regional scale. This
combines the advantages of cell-based and structure-based model
parameters.

In this paper, we present three joint inversion examples using
synthetic CSEM and MT data. All examples have been carefully
designed in order to provide realistic examples as well as to ad-
dress important aspects to be considered when jointly inverting EM
data. One aspect of paramount importance is to weight a data type
in order to fully exert its characteristic resolution strength within
the inversion process without bestriding the influence of the other
type. The first example features the hybrid model parametrization.
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1306 M. Commer and G. A. Newman

Moreover, it demonstrates the flexibility of our inverse solution to
be applied to data collected from surface surveys. Different ways
of estimating properly balanced data weights are discussed within
the following two studies, where marine hydrocarbon prospecting
scenarios are simulated.

2 M E T H O D O L O G Y

Our inversion algorithm’s underlying finite-difference (FD) forward
modelling algorithm for EM field simulation solves a modified form
of the vector Helmholtz equation for scattered or total electric fields.
The theoretical principles and numerical implementation for parallel
computers are outlined in detail by Alumbaugh et al. (1996). Details
about the inversion algorithm can be found in the works of Newman
& Alumbaugh (1997, 2000), and Commer & Newman (2008). We
use a non-linear conjugate gradient (NLCG) approach to minimize
a general objective function �,

� = �d + �m = 1
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where H denotes the Hermitian operator. The summation term de-
scribes the data constituent, �d , of the objective function and the
summation (i) occurs over the number of different data types in the
data input. Each data term consists of the vectors of observed and
predicted data, do

i and dp
i . The diagonal weighting matrix Di defines

the degree of influence of the corresponding data on the inversion
process. Using the underlying FD forward modelling algorithm, the
predicted data are initially computed from a starting model, which
is iteratively refined during the course of the inversion. The second
term applies a smoothing matrix, W, to the vector of model param-
eters, m. In order to minimize model curvature in all three spatial
dimensions, we usually apply a FD approximation to the Laplacian
operator (∇2). Minimizing the model roughness term �m acts as a
stabilizer to avoid geologically unrealistic images. The regulariza-
tion parameter λ balances the influence of �d and �m on the image
solution. We refer the interested reader to the work of Newman &
Boggs (2004) for details on its selection. For the CSEM–MT joint
inverse problem, the gradient of the total objective function shall be
written as

∇� = ∇�CSEM + ∇�MT + ∇�m . (2)

2.1 A hybrid model parametrization approach

In general, parametrization is a way of defining the parameters of
some model that are salient to the qualitative question and quanti-
ties to be estimated from that model. In 3-D imaging, a common
way is to use the elements comprising a digitized FD or finite-
element mesh of parameters, which is also referred to as cell-based
(or pixel-based) approach. The simplicity of this approach comes at
the expense of a high degree of solution non-uniqueness, owing to
the underdeterminacy of the inverse problem that has a much higher
number of parameters than actual observations. Several strategies
have been reported to limit the ambiguities for reconstructed targets
and its conductivities. For cell-based problems, model-smoothing
constraints are among the most common strategies to limit the solu-
tions to a class of geologically more meaningful ones, thus avoiding
too much spatial variation in the material parameters.

A different approach is to address the underdeterminacy by
casting the EM inverse problem into a parametric problem. The

definition of geometric shapes in parametric solutions requires a
priori information and assumptions. In the context of EM inver-
sions, the geological a priori knowledge is often provided by seis-
mic reflection data, where one assumes that horizons of different
acoustic impedances also exhibit electrical conductivity contrasts
(Hoversten et al. 2000). The 2-D sharp boundary inversion (SBI)
approach by Smith et al. (1999) is parametrized to accommodate
sharp contrasts in resistivity across layer interfaces. The model
unknowns thus become boundaries between layers and its conduc-
tivities assigned to the boundary nodes. While showing benefit,
especially for verification of images obtained from other methods
(Hoversten et al. 2000; Commer et al. 2006), parametric meth-
ods usually come at the expense of strongly affecting the resulting
models.

Here, it is proposed to keep the high degree of freedom pro-
vided by pixel-based inversions within a focusing area of interest,
while using a simple parametric model for the regional conductivity
model. In principle, the regional model parameters are constructed
by pooling together the corresponding grid cells of the underlying
model grid defining the inversion domain. Consider the gradient
vector of a cell-based model, with M unknown cell parameters,

∇� = (g1, g2, . . . , gM )T .

We predefine fixed structures by combining the gradient vector
components of the cells within the structure volume, specifically

Gm = 1

Mm
�

Mm
i=1 gi ,

where Mm defines the number of grid cells contained within a struc-
ture parameter’s volume. Dividing the combined gradient compo-
nent by Mm ensures a balance between differently sized parameters
of this kind. The electrical conductivity is constant within this vol-
ume and is an unknown parameter to be optimized. Structures of
arbitrary shapes can be constructed in this way. In this study, we
do not consider variable structure boundaries, but experiment with
a hybrid inversion scheme, using both cell-based and parametric
unknowns at the same time. The ‘hybrid’ gradient vector is then
composed of M p parametric components, also referred to as struc-
ture parameters in the following, and Mc cell-based components,

∇� = (G1, G2, . . . , G M p , g1, g2, . . . , gMc )T .

The idea is to keep the high degree of freedom, provided by cell
parameters, within a certain volume of interest, while seeking to
greatly reduce the total number of unknowns outside of this vol-
ume by a ‘coarser’ parametrization, so M p + Mc � M . Below, we
present an example where such a hybrid parametrization helps to il-
luminate a deep region of interest, which cannot be properly imaged
by using a purely cell-based method over the whole model.

2.2 Balancing data weights

For a number of Ni data points, assigned to a given data type i, the
total data constituent of the objective function in eq. (1) can also be
written as

�d = 1

2
�i�

Ni
n=1�n�

∗
n . (3)

The complex data difference term �n , with ∗ denoting its complex
conjugate, is constructed from the in-phase (Re) and quadrature
(Im) parts of the data points (here i = imaginary unit),

�n = Re
(
do

n − d p
n

)
Re(wn) + iI m

(
do

n − d p
n

)
I m(wn), (4)
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3-D CSEM and MT joint inversion 1307

Figure 1. CO2 sequestration monitoring study. (a) shows the station setup with a projection of the resisitive injection reservoir. (b) The true model in
cross-sectional view. (c) illustrates the hybrid model parameterization. Green lines depict the model grid, white lines outline the parametric (here layers)
unknowns.

where do
n represents an observed datum, and dp

n is predicted through
forward modelling. The data weights, wn , are the components of
the weighting matrix Di of eq. (1), and are usually based upon the
inverse of the standard deviations of the measurements.

In a typical joint inversion of CSEM and MT data for exploration
purposes, particularly in marine surveys with a moving CSEM trans-
mitter, it can be expected that the number of CSEM data points
greatly exceeds the number of MT data points. Assuming that both
data types have similar noise levels, it will be shown in examples
below that the more numerous CSEM data can cause the influence
of the MT data on the imaging outcome to become insignificant.
As a remedy, similar to the model regularization parameter λ, one
can consider additional trade-off parameters between the data con-

stituents in eq. (1). However, in this paper we do not employ further
trade-off parameters, but impose a properly balanced data influence
directly through the data weights. For the mentioned marine case,
this would involve enhancing the MT data against the CSEM data. It
may require a number of imaging experiments until a set of weights
Di can be deemed as the most consistent obtained with the avail-
able time and computing resources. In this study, we experiment
with a cooling approach as suggested for selecting a proper model
regularization parameter (Newman & Hoversten 2000).

As an alternative, two methods for directly estimating data
reweighting factors shall also be proposed. The first scheme of
approaching an equal balance simply considers the number of data
points each data method contributes. Two data sets, 1 and 2 (CSEM
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1308 M. Commer and G. A. Newman

Figure 2. CO2 sequestration monitoring study. CSEM–MT joint inversion result after 146 iterations (RDMD = 0.5 per cent) using only cell-based parameters
over the whole inversion domain. The true layered background represents the starting model for this result.

and MT, respectively), shall contain a number of data points given
by N1 and N2, where N1 > N2. Data set 2 is then up-weighted by
applying a factor f w ,

w̃n = wn fw; fw =
√

N1

N2
, (5)

to its data weights, where the square root stems from the fact that �d

depends quadratically on wn . This scheme assumes that one has a
high confidence in the original standard deviations of the measure-
ments. Furthermore, such a method is likely to achieve a balanced
data influence only when both data methods are characterized by
similar intrinsic sensitivities. The latter vanishes with less overlap
in model resolution capacities between two data sets, which may
call for additional up-weighting of the MT data.

The second data reweighting scheme uses norms of the gradients,
considering only the data constituents in eq. (2). Here, the up-
weighting factor f w for data set 2 is computed from

fw =
√

||∇�CSEM||
||∇�MT|| . (6)

Computing the gradient norms from the initial (starting) model,
the method has the advantage of providing a fast estimate of the
intrinsic data sensitivities, which incorporates both the quantity and
resolution capacity in a joint data set.

2.3 Grid design

In the following, a variety of examples is presented, with a wide
range of survey geometries and signal frequencies. Each synthetic
data set involves two sets of FD simulation grids, here also called
computing grids. The first is for the actual data generation and is
a set of fine (oversampled) grids, in order to have some degree of

independence from the forward modelling process during the ac-
tual inversion of the synthetic data. The inversion employs coarser
meshes, where the spatial extension and the grid sampling rate are
adapted specifically to the survey geometries and signal frequencies,
respectively. In general, lower frequencies allow for a coarser sam-
pling. The concepts for optimizing the computing grid design are
outlined in detail in an earlier study (Commer & Newman 2008).
In this preceding study, we refer to the mesh defining the model
parametrization, and including the imaging domain, as the mod-
elling grid. The modelling grid sampling is chosen according to
the desired degree of resolution in the parametrization. The proper
material averaging scheme for mapping between modelling grids
and computing grids are also outlined in detail in the mentioned
paper.

3 S Y N T H E T I C DATA I N V E R S I O N
S T U D I E S

In the following, three synthetic data inversion studies are presented.
The examples are chosen such that each one covers different aspects
of practical relevance for joint inversion problems. Only in-line elec-
tric field components shall be considered for the CSEM data. The
fields are generated from horizontal electric dipole (HED) trans-
mitters with finite lengths. For the MT stations, we always consider
point dipoles and invert only the two off-diagonal impedance tensor
elements Zxy and Zyx. In accordance with an earlier MT inversion
study (Newman et al. 2002), the diagonal components, Zxx and Zyy,
exhibit a rather noisy behaviour for the MT frequency band used in
the studies presented here. Hence, these data are omitted, as they
were not found to improve the shown imaging results. The data
errors are computed from the data amplitudes and are 3 per cent for
CSEM and 1 per cent for MT, both with a Gaussian distribution.
For the shown inversion attempts, unless mentioned otherwise, the
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3-D CSEM and MT joint inversion 1309

Figure 3. Standalone CSEM (a) and MT (b) inversions for the CO2 se-
questration study. The smaller figures on the right show the true layered
background. The white rectangle outlines the true resistor, and the black
rectangle is the volume of the cell-based parameterization.

relative data misfit decrease (RDMD),

RDMD(per cent) =
∣∣∣∣�d (n) − �d (n − 1)

�d (n − 1)

∣∣∣∣ × 100

between successive inversion iterations, n − 1 and n, shall be chosen
as a stopping criteria. More precisely, over a course of a predefined
and always enforced maximum number of iterations, the solution
is extracted from the inversion iteration where the RDMD drops
below a given threshold for the last time.

3.1 CO2 sequestration monitoring study

The first study presented demonstrates the advantages of a proper
model parametrization, while at the same time it shall also serve as
a practical example for a monitoring scenario using surface CSEM
and MT measurements together.

The sequestration of carbon dioxide (CO2) is considered as a
means to mitigate the environmental effects due to carbon emis-
sions from the burning of fossil fuels. Starting in the late 1990s,
the research in this area has grown into a multi-faceted effort with
geophysical monitoring methods playing a crucial role. Therefore,
accurate modelling and imaging techniques are required for a com-
plete understanding of the long-term performance issues at large
industrial storage sites. To provide a high level of confidence that
the injected gas will remain sequestered permanently, an emphasis

Figure 4. CSEM–MT joint inversions for a centred (a) reservoir and a
shifted (b) gas reservoir.

is on the geologic response in the intermediate zone between the
injection point and the surface area. Most geophysical monitoring
activities addressing this task thus far have involved seismic meth-
ods, see for example recent reports by Lumley et al. (2008) or White
(2008). While other methods include the cross-borehole EM tech-
nique (Kirkendall & Roberts 2004), the authors are not aware of any
pilot studies involving surface EM techniques. The questions to be
answered by the following study is to what degree a resistive plume
can be imaged by combining surface CSEM and MT measurements.
Moreover, can the movement of a CO2 plume be monitored?

Fig. 1 introduces the model of an underground gas reservoir
at depth overlaid with the positions of surface-based CSEM and
MT field stations. The station setup (a) comprises 15 MT stations
spread over an area of 4 × 4 km2. Each station measures 9 MT
frequencies, ranging logarithmically from 0.1 to 10 Hz. HED CSEM
transmitters of length 100 m are located at each end of the centrally
located receiver profile. The profile contains 38 in-line electric field
detector points, excited by three CSEM frequencies, 0.25, 0.75 and
1.25 Hz. Because of a relatively balanced amount of data points,
228 CSEM data points and 270 MT data points, no additional data
weighting is employed in this example.

The principal assumption for this case study is that major features
of the geology surrounding the target location of interest, that is, the
injection area, are known a priori. Much a priori information can
be expected to be available. Designated sequestration sites are ei-
ther former oil or natural gas production areas with an already good
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1310 M. Commer and G. A. Newman

Figure 5. Marine prospecting study 1: The CSEM and MT survey layout
on the seafloor (z = 0) is shown together with a projection of the reservoir
at a depth of z = 1 km.

understanding of the underlying geology. In undeveloped fields, pre-
ceding site characterization and feasibility studies can be expected
to provide a structural knowledge base. The background is chosen
to be a horizontally layered geology with seven layers of contrast-
ing electrical conductivities, underlying the target region of interest
(Fig. 1b). Here, it shall be assumed that the injection of gas at a
depth of z = 1500 m causes a conductivity drop to 0.005 S m−1

within a volume of 0.8 km3, which could be explained by a volume
increase and thus a pressure drop, vaporizing the CO2 to a gaseous
state. Such a large response is considered in this example, since
only surface measurements are used.

The imaging volume is shown by Fig. 1(c), where the green lines
depict the underlying cell-based model (parametrization) grid, and
the white lines outline the shapes of the horizontal layer structure
parameters. The parametric unknowns are 20 layers with a thickness
of 100 m, and the base layer below z = 2000 m. Note that the
underlying computational FD grid, not shown here, is different to
the model grid, since we design optimal grids adapted specifically
to the CSEM/MT signal frequencies and layouts. The model grid
has a sampling interval of 100 m within the cell-based imaging
volume, depicted by the white rectangle. This volume represents
the injection area and extends from −2500 to 2500 m horizontally
and z = 1200–2000 m, which amounts to 16 807 FD model grid
cells. Note that each layer interrupted by the cell-based imaging
volume still forms one structure parameter. The total number of
unknowns for the hybrid parametrization is M p + Mc = 16 828,
compared to M = 108 000 for the completely cell-based inversion.

A homogeneous half-space with σ = 0.1 S m−1 and a resistive
layer (σ = 10−4 S m−1) for the air space is used as starting model.
1-D comparisons showed that this conductivity contrast (1000:1)
provides for sufficient solution accuracy. It shall be mentioned as
a side note that the conductivity contrasts in a model affect the
iterative Krylov solver convergence of the forward solution. To
benefit from the fact that lower contrasts generally improve the

convergence, we seek to minimize the conductivity contrast between
the air and the earth. More details on this Krylov solver convergence
issue, there in the context of modelling topography, can also be
found in the paper of Commer et al. (2006) and references therein.

We have carried out both standalone CSEM and MT inversions
as well as joint inversions using a pixel-based parametrization over
the whole model domain, which involves 108 000 cell parameters.
However, the target’s depth and the sparsity of the data account
for the failure to properly resolve the region of interest. Starting
from the half-space model, the inversions end in a local minimum
without significant changes to the target region. The image of a
pixel-based joint inversion is shown in Fig. 2. Here, the true lay-
ered background (Fig. 1b) was used as starting model. The result
demonstrates the non-uniqueness problem. Significant conductivity
changes only occur in the region close to the surface. While ade-
quate gradient depth-weighting schemes can be used to enhance the
resolution at greater depths, this shall not be further pursued in this
paper.

The first two inversion results using the hybrid parametrization
are shown in Fig. 3. These are standalone CSEM and MT inversions
and demonstrate the strengths of either method. The CSEM data can
resolve the resistive injection volume depicted by the white rectan-
gle. However, the layered background conductivities approach the
true case only within the upper 1000 m. On the other hand, the MT
inversion resolves the background to a better overall degree, while
the data is not sensitive to the thin resistor. As a stopping criteria, we
used a value RDMD = 0.5 per cent, which required 75 iterations for
both results. This means that subsequent iterations did not achieve
a higher relative misfit decrease over a maximum of 100 iterations.

The following Fig. 4 shows two joint inversion results. First,
we inverted for a centrally located resistor (a). Below (b) is the
result for a reservoir which is shifted by 1000 m to the left of
its original x-axis position and 200 m upwards, without change
along the y-axis. The joint inversions show a clear improvement by
combining the resolution capabilities of both methods. Compared
to the standalone CSEM inversion, there is a much better agreement
with the true resistivity of the target region. Furthermore, the result
comes much closer to the true layered background, especially in the
region above the reservoir. While the image of the resistor remains
rather diffusive, and does not show the precise vertical location, a
very small shift to the left can be observed in the lower figure.

The major conclusion to be drawn from this study is that the
hybrid model parametrization is essential in illuminating the subtle
target region. A purely cell-based inversion is not able to indicate the
deep target due to a too sparse data coverage. Second, joint imaging
may prove beneficial for EM time-lapse monitoring of sequestration
sites. Not only does one seek to track conductivity changes due to
a moving plume, but also changes in the background conductivity,
which can be expected over seasonal time periods.

3.2 Marine prospecting study 1

The search for hydrocarbons now extends to highly complex and
subtle offshore geological environments. An important exploration
problem to demonstrate the advantages of joint conductivity inver-
sion of CSEM and MT data is the imaging of oil bearing horizons in
the presence of subsalt structures. The geometries of the reservoirs
and salt structures are exceedingly difficult to map without recourse
to 3-D imaging. Such structures are encountered in the Gulf of
Mexico, where seismic imaging beneath salt can be a formidable
task. For oil bearing horizons above salt, the situation is better, but
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3-D CSEM and MT joint inversion 1311

we will show that such structures can be identified much better
under a joint imaging framework.

In Fig. 5, the survey setup on the sea bottom is plotted together
with a projection of the reservoir at a depth of 1 km to the plotting
plane. The inversion data set consists of 143 MT stations spread over
a 25 × 25 km2 grid. Each of the two impedance tensor elements Zxy

and Zyx is measured for 13 MT frequencies, ranging (logarithmi-
cally) from 5 × 10−4 to 0.125 Hz. The grid of CSEM detectors is a
subgrid of the MT station grid, with 63 locations comprising an area
of 20 × 15 km2. It is common to treat marine CSEM data in a re-
ciprocal way, owing to a continuously moving transmitter along the
sail lines of the vessel. Hence the actual receivers become computa-
tional transmitters, or sources, marked as CSEM stations in Fig. 5.
With two CSEM frequencies, 0.25 and 0.75 Hz, for each source, we
simulate a total of 126 sources oriented along the x-axis and with a
length of 200 m. A total of 6468 in-line receivers, with a length of
100 m, are evenly spread over the lines marked as CSEM sail lines,
which in reality would correspond to the lines of the moving trans-
mitter. These lines are 50 m above the seafloor. Counting in-phase
and quadrature components of the complex data, the total number
of data points is NCSEM = 12 936 and NMT = 7436. We invert for a
total number of 1105104 cell-based resistivity parameters.

Again, we want to compare the greatly improved image resulting
from jointly inverting all data to the standalone inversion results.
Figs 6 and 7 show the imaged volume as vertical xz-slices and

Figure 6. Marine prospecting study 1: Original model (a), CSEM inversion (b), MT inversion (c), and joint inversion (d) in a x − z cross-sectional view. The
colour scale corresponds to Fig. 5.

horizontal xy-slices, respectively (same colour scale as in Fig. 5).
The original model (a) is based on an earlier subsalt MT imaging
study of the Mahogany prospect in the Gulf of Mexico (Newman
et al. 2002). The marine model, with a sea water (� = 0.33 �m)
column of 1 km, features several interconnected salt bodies reaching
a depth of over 6 km. The resistivity of these bodies, embedded into
a 0.5 �m background, averages 100 �m. Further, a hypothetical
resistive (� = 50 �m) hydrocarbon reservoir with a thickness of
250 m is included at 1 km below the seafloor.

The image results of the separate CSEM and MT inversions (b
and c in Figs 6 and 7) again show the different degrees of resolution
achieved by either method. While the oil bearing horizon is clearly
indicated by the CSEM image, yet without a clear delineation of
the true shape, the MT data is only sensitive to the large salt bodies;
however the MT image shows salt body conductivities which are
generally above the true values. A great improvement is achieved by
the joint inversion (d), both in terms of a delineation of the reservoir
and salt bodies, as well as in reproducing the true conductivities.
Note also that the depth of the salt bodies is reproduced to a fairly
good degree.

For this study, we carried out a cooling approach to zero in on a
balanced influence between the CSEM and MT data, such that both
the shallow and deep model features are reproduced satisfactorily.
In addition to image quality, a judging factor was also solution
convergence. Starting with the original data weights, a too dominant
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1312 M. Commer and G. A. Newman

Figure 7. Marine prospecting study 1: Original model (a), CSEM inversion (b), MT inversion (c), and joint inversion (d) viewed in horizontal depth sections
from 0 to 6 km. The colour scale corresponds to Fig. 5.

CSEM data influence could be observed, resulting in an image
similar to the standalone CSEM inversion. An optimal MT data
reweighting factor was found to be f w = 10. As an experiment,
a much larger factor ( f w = 100) was also tried, giving too much
weight to the MT data and thus producing an image close to the MT
standalone inversion result.

The image improvement also reflects in the much smaller data
fitting errors, shown as error bars along the MT-stations and CSEM
receiver profiles in Fig. 8. These errors were calculated using eqs
(3) and (4) and further averaging over the respective number of
data points at each detector location. Note that, for a comparison of
the MT data fits, the MT errors of Fig. 8(b) are calculated with the
same weights (enhanced by a factor of f w = 10) as used for the
joint calculation. Consequently the errors appear to be by a factor
of 100 larger than the ones produced by the original errors. Using
the original MT data weights, the MT standalone inversion result
produces averaged errors with values below one at each station
position. In addition to a smoother error variation across the survey
area, it is also observed that the most significant error decrease in
the joint inversion result happens above the region with a larger
subsurface concentration of the salt bodies (y > 2.5 km).

3.3 Marine prospecting study 2

The previous examples have shown that MT and CSEM data offer
complementary information on subsurface electrical conductivity
and it is therefore reasonable to combine both types of data in the
imaging process in order to provide the most consistent view of the
subsurface. So far, we have combined the data in a simultaneous
way, and keep referring to this as joint inversion. However, it shall
be pointed out that interpreting different data types can also involve
the successive inversions of different data types. Often, each type
of image is then analysed independently and then overlaid to in-
vestigate its relationship with the other data type. In the following,
we also experiment with a sequential approach, where the image
produced from one data type feeds the starting model of the other
data type. Specifically, it will be investigated whether the foregoing
standalone MT inversion improves the image of the regional con-
ductivity background, compared to a (simultaneous) joint inversion.

The example’s layout, shown in Fig. 9(a), is another marine
prospecting study using the synthetic data from a single profile.
The profile contains 7 CSEM source positions with a HED length
of 50 m. Again, in a real-world scenario, these are the detector
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Figure 8. Marine prospecting study 1: Data fitting errors plotted along the CSEM receiver profiles and MT station profiles. (a) and (b) are produced from the
standalone CSEM and MT inversions; (c) and (d) are the CSEM and MT data fits computed from the joint inversion result. Note that for a comparison, the MT
data fits are both calculated using the enhanced weights (up-weighted by a factor of f w = 10).

locations. The locations coincide with the MT stations. Further, we
have three CSEM frequencies (Hz): 0.25, 0.5 and 1.25; 78 CSEM
point-dipole receivers for each source at 50 m above the seafloor
(z = 0); five MT frequencies (Hz): 0.01, 0.018, 0.032, 0.056, 0.1.
The model for synthetic data creation comprises a 1 km deep sea
column and a regional layered background with non-horizontal sine-
shaped horizons which are invariant along the y-axis. Embedded at
a depth from z = 0.8 − 1 km is a 0.01 S m−1 resistive reservoir,
with a maximum (bottom side) size of 1 km along x and a strike of
1.65 km along y.

We choose a rather ideal horizontally layered starting model with
the true layer conductivities (Fig. 9b), since the focus of this study
shall only be to investigate to what degree both the reservoir body
and the true layer interfaces are reproduced with different methods.
Also, we use as stopping criteria a higher value, RDMD = 3 per cent,
for the MT (standalone) inversion, since its only purpose is to pro-
duce a starting model to launch a CSEM inversion. To compare
all other results to each other, only the CSEM data is considered
for the threshold of RDMD = 0.5 per cent. Both the standalone
CSEM and MT inversions (Figs 9c and d) achieve a relatively good
delineation of the upper layer interface. The CSEM image indicates
the reservoir, yet with a few unrealistic anomalies away from the
reservoir, around x ± 2.5 km. In contrast, the MT image does not
resolve the thin resistive reservoir, however achieves a slightly better
delineation of the lower layer boundary.

Because of a relatively large ratio, NCSEM
NMT

= 23.4, in the amount
of the two data types, the (simultaneous) joint inversion result in
Fig. 10(a), produced with the original synthetic data weights, has
a similar outcome as the standalone CSEM inversion. Clearly the
beneficial MT resolution properties observed in the previous result
are now suppressed. Therefore, in the next attempt (Fig. 10b), the
model from the MT inversion is taken as starting model for a subse-
quent CSEM inversion, running for 30 more iterations after which
the stopping criteria is met. The result clearly shows much better de-
lineation of the background beds, together with a sharper image of
the reservoir. Still, there is some inexactness in the vertical reservoir
geometry. To assess the performance of this sequential approach,
both data reweighting schemes, eqs (5) and (6), are employed for
the joint inversion results shown in Figs 10(c) and (d), respec-
tively. The corresponding factors applied to the MT data weights are
f w = 4.8 and 8.2. Both schemes enhance the MT data influence suf-
ficiently such that the background model does not show the artefacts
mentioned above produced by the CSEM inversion. In comparison,
weighting scheme 1 produces a slightly closer match to the true
reservoir conductivity.

In conclusion, estimating proper data reweighting factors either
through the ratios of the data amounts or the initial data gradient
norms enhances the intrinsic resolution capacities of the MT data
adequately. Comparing all four joint inversion results, the sequential
approach is achieved at the lowest computational effort. While it

C© 2009 Lawrence Berkeley National Laboratory, GJI, 178, 1305–1316

Journal compilation C© 2009 RAS



1314 M. Commer and G. A. Newman

Figure 9. Marine prospecting study 2: Original model (a), starting model (b), CSEM inversion (c) and MT inversion (d) in a x − z cross-sectional view.

provides a closer match to the low reservoir conductivity, the simul-
taneous joint inversion results reproduce the reservoir size slightly
better.

4 C O N C LU S I O N S

We have presented a number of CSEM–MT joint imaging results
of practical relevance with different aspects to be considered when
combining different EM data types. An important finding is that
a good understanding of the intrinsic resolution capacities of the
different data types is essential in order to take full advantage of
the information contained within each. Carrying out several stan-
dalone, sequential, and simultaneous inversion attempts may be nec-
essary to gain such understanding, until a final image can be trusted.
To produce maximally consistent images through joint inversions,
all examples have shown the great importance of a proper data
weighting.

The CO2 sequestration study showed that, in addition to the
improved resolution provided by the combined data, a more con-

strained model parametrization is also essential in order to extract
the desired information about a subtle target at depth from surface
measurements. It is anticipated that the sequestration monitoring
efforts will routinely involve cross-borehole measurements, either
seismic and/or EM. Hence, the next step would involve a joint in-
version of both borehole and surface data. We believe that this has
the potential to greatly improve the delineation of a CO2 plume.
Also, changes in the peripheral regions of the injection area can
be tracked at the same time. If undiscovered, such changes may
otherwise lead to false assumptions about plume geometries. The
presented hybrid model parametrization can be imagined for a num-
ber of time-lapse imaging scenarios, especially at monitoring sites,
where the background geology is usually known to a high degree.

The great power of combining marine MT and CSEM data for
offshore hydrocarbon mapping has become clear in the two ma-
rine studies. In the first example, the MT data illuminated deep
salt structures, which produced a much clearer rendering of the
hydrocarbon bearing horizon in the combined data inversion. Like-
wise, the CSEM data helped to produce a sharper image of the
salt than obtained from inverting the MT data alone. In view of
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Figure 10. Marine prospecting study 2: Results (a) and (b) are produced from the original synthetic data weights, inverting the CSEM and MT data sets
simultaneously and sequentially, respectively. (c) and (d) are images produced from inversions employing two different ways of estimating balanced data
weights.

the good delineation of the target structures, one can imagine the
tremendous potential when overlaying or even jointly inverting with
seismic data. The second marine study demonstrated some compu-
tational benefit of inverting different data types sequentially. Using
the data containing the more regional information first, can produce
a much closer starting model for a subsequent more focusing image
of a subtle target. This approach may serve as an alternative way
when uncertainty exists about the proper weighting of different data
types.
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